$\epsilon = 10^{-10}$としたらWAった。$10^{-6}$にしたら通った。

## implementation

#include <cstdio>
#include <vector>
#include <algorithm>
#include <complex>
#include <cassert>
#define repeat(i,n) for (int i = 0; (i) < int(n); ++(i))
#define whole(f,x,...) ([&](decltype((x)) whole) { return (f)(begin(whole), end(whole), ## __VA_ARGS__); })(x)
using namespace std;

const double eps = 1e-6;
typedef complex<double> point;
struct circle { point c; double r; };
struct line { point s, t; };
struct segment { point s, t; };
struct ray { point s, t; };
double   dot(point p, point q) { return real(p * conj(q)); }
double cross(point p, point q) { return imag(conj(p) * q); }
int ccw(point a, point b, point c) { double z = cross(b - a, c - a); return z > eps ? 1 : z < - eps ? -1 : 0; }
bool does_intersect(point a, line b) {
return ccw(0, a - b.s, b.t - b.s) == 0;
}
bool does_intersect(line a, point b) {
return does_intersect(b, a);
}
bool is_parallel(line a, line b) {
return ccw(0, a.t - a.s, b.t - b.s) == 0;
}
bool is_overwraped(line a, line b) {
return does_intersect(a.s, b)
and does_intersect(a.t, b);
}
bool does_intersect(line a, line b) {
return not is_parallel(a, b)
and not is_overwraped(a, b);
}
point intersection(line a, line b) {
assert (does_intersect(a, b));
double p = cross(a.t - a.s, b.t - b.s);
double q = cross(a.t - a.s, a.t - b.s);
return (q / p) * (b.t - b.s) + b.s;
}
bool does_intersect(point a, segment b) {
return abs(cross(b.t - b.s, a - b.s)) < eps
and dot(b.t - b.s, a - b.s) > - eps
and dot(b.s - b.t, a - b.t) > - eps;
}
bool does_intersect(segment a, point b) {
return does_intersect(b, a);
}
template <typename T, typename U>
bool does_intersect_linelikes(T const & a, U const & b) {
if (not does_intersect(to_line(a), to_line(b))) return false;
point c = intersection(to_line(a), to_line(b));
return does_intersect(a, c)
and does_intersect(b, c);
}
line to_line(segment a) {
return { a.s, a.t };
}
bool does_intersect(segment a, segment b) {
return does_intersect_linelikes(a, b);
}
point intersection(segment a, segment b) {
assert (does_intersect(a, b));
return intersection(to_line(a), to_line(b));
}

int main() {
int testcase; scanf("%d", &testcase);
while (testcase --) {
segment a; { int ax, ay, bx, by; scanf("%d%d%d%d", &ax, &ay, &bx, &by); a = { point(ax, ay), point(bx, by) }; }
int n; scanf("%d", &n);
vector<pair<double, bool> > events;
repeat (i, n) {
segment b; { int ax, ay, bx, by; scanf("%d%d%d%d", &ax, &ay, &bx, &by); b = { point(ax, ay), point(bx, by) }; }
int o, t; scanf("%d%d", &o, &t);
if (does_intersect(a, b)) {
point p = intersection(to_line(a), to_line(b));
events.emplace_back(abs(p - a.s), o ^ t);
}
}
whole(sort, events);
int last = -1;
int result = 0;
for (auto event : events) {
bool type = event.second;
if (last != -1 and last != int(type)) {
result += 1;
}
last = int(type);
}
printf("%d\n", result);
}
return 0;
}